DrägerSensor® CatEx 125 PR

Order no. 68 12 950

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger X-am 1/2/50	00 –	yes	3 years	> 4 years	-
Dräger X-am 8000	-	yes	3 years	> 4 years	

MARKET SEGMENTS

Telecommunications, shipping, sewage, gas supply companies, refineries, chemical industry, mining, landfills, biogas plants, sewage treatment plants, tunneling.

TECHNICAL SPECIFICATIONS

Detection limit:	2% LEL		
Resolution:	1.0% LEL for measuring range 0 to 100% LEL,		
	0.1 Vol% for measuring range 0 to 5 Vol% CH ₄ (methane)		
Measurement range:	0 to 100% LEL in Dräger X-am 2500/5000 or		
	0 to 100 Vol.% CH ₄ (methane) in Dräger X-am 5000		
General technical specifications			
Ambient conditions			
Temperature:	(-20 to 55)°C (-4 to 131)°F		
Humidity:	(10 to 95)% RH		
Pressure:	(700 to 1,300) hPa		
Warm-up time:	≤ 3 minutes		

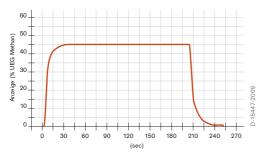
FOR THE MEASUREMENT RANGE 0 TO 100% LEL WHEN CALIBRATED WITH METHANE IN AIR:

Response time:	≤ 17 seconds (T ₉₀) at 25 °C (77 °F)		
	≤ 7 seconds (T ₅₀) at 25 °C (77 °F)		
	typical values for X-am 2500 T ₉₀ at 25 °C (77 °F) ≤ 12 seconds		
	typical values for X-am 5000 T ₉₀ at 25 °C (77 °F) ≤ 10 seconds		
Measurement accuracy:	≤ ± 1% LEL		
Long-term drift			
Zero point:	≤ ± 2% LEL/month		
	typical value in X-am 2500/5000 ≤ 1 % LEL/month		
Sensitivity:	≤ ± 2% LEL/month		
	typical value in X-am 2500/5000 ≤ 1 % LEL/month		
Influence of temperature			
Zero point:	≤ ± 0.1% LEL/K at (-20 to 40)°C (-4 to 104)°F		
Sensitivity:	\leq ± 0.1% of measured value/K at (-20 to 40)°C (-4 to 104)°F		
Influence of humidity			
Zero point:	≤ ± 1% LEL		
Sensitivity:	≤ ± 2% LEL (test gas 50% LEL), effect of humidity when calibrating		
	at 0% relative humidity in the range of 10–90 % at 40°C)		
Effect of sensor poisons:	Hydrogen sulfide H ₂ S, 1000 ppmh $\leq \pm 2\%$ of the measured value		
	Hexamethyldisiloxane HMDS 10 ppmh ≤ ±5 % of the measured value		
	Hexamethyldisiloxane HMDS 30 ppmh ≤ ±20 % of the measured		
	value. After an exposure to HMDS of 10 ppm for 5 hours, the loss of		
	sensitivity is less than 50%. Halogenated hydrocarbons, volatile sub-		
	stances containing sulphur, heavy metals and silicon, or substances		
	capable of polymerisation: poisoning possible.		

FOR THE MEASUREMENT RANGE 0 TO 100% LEL WHEN CALIBRATED WITH PROPANE IN AIR:

Response time:	≤ 10 seconds (T ₅₀) at 25 °C (77 °F) ≤ 32 seconds (T ₉₀) at 25 °C (77 °F)		
	typical values for X-am 2500 T ₉₀ at 25 °C (77 °F) \leq 24 seconds		
	typical values for X-am 5000 T ₉₀ at 25 °C (77 °F) \leq 14 seconds		
Measurement accuracy:	1 % LEL		
Long-term drift			
Zero point:	≤ ± 2% LEL/month		
Sensitivity:	≤ ± 2% LEL/month		
Influence of temperature			
Zero point:	≤ ± 0.1% LEL/K at (-20 to 40)°C (-4 to 104)°F		
Sensitivity:	$\leq \pm 0.1\%$ of measured value/K at (-20 to 40)°C (-4 to 104)°F		
Influence of humidity			
Zero point:			
Sensitivity:	≤ ± 2% LEL		
	(test gas 50% LEL), effect of humidity when calibrating at 0% rela-		
	tive humidity in the range of 10 - 90% at 40°C.		

FOR THE MEASUREMENT RANGE 0 TO 100 VOL.-% CH4:


Response time:	≤ 30 seconds (T ₉₀) at 5 to 100 Vol% at 25 °C (77 °F)
Measurement accuracy	≤ ± 1 % LEL
Linearity error:	
0 to 50 Vol%	≤ ± 5 Vol%
50 to 100 Vol%	≤ ± 10% of measured value
Long-term drift	
Zero point:	$\leq \pm 3$ Vol%/month
Sensitivity:	≤ ± 3 Vol%/month
Influence of temperature:	≤ ± 0.15 Vol%/K at (-20 to 40)°C (-4 to 104)°F
Influence of humidity:	≤ ± 0.15 Vol%/ %RH at 40°C / 104°F
Test gas:	approx. 2 Vol% or 50 Vol% CH ₄ test gas

This setting is not suitable for the monitoring of explosive mixtures in the measuring range of 0 to 100% LEL.

SPECIAL CHARACTERISTICS

The DrägerSensor® CatEx 125 PR (Poison Resistant) is used to detect flammable gases and vapors. The detection of hydrocarbons from methane to nonane is certified by a measurement performance certificates for use in the Dräger X-am 1/2/5000 series in accordance with EN 60079-29-1 and EN 50271. It also has a small long-term drift, few influence of humidity and excellent poison resistance against hydrogen sulfide, siloxiane and other sensor poisons.

Ansprechzeit des DrägerSensor CatEx 125 PR im X-am 5000 bei 45% UEG Methan

DETECTING OTHER GASES AND VAPORS

Through the use of cross sensitivities for the measurement range of 0 to 100% LEL. The figures given are typical readings when calibrated with methane (CH₄) and apply to new sensors without additional diffusion barriers. A LEL of 4.4 Vol.-% was used for methane. If a LEL of 5.0 Vol.-% is used, then the figures in the table must be multiplied by a factor of 0.88. The table does not claim to be complete. The sensor may also be sensitive to other gases and vapors.

Gas/vapor	Chem. symbol	Test gas concentration	Displayed
		in Vol%	reading
			in % LEL
Acetone	CH ₃ COCH ₃	1.25	31
Acetic acid	CH3COOH	3.0	23
Acetylene	C ₂ H ₂	1.15	36
Ammonia	NH ₃	7.7	57
Benzene	C ₆ H ₆	0.6	25
Butadiene -1,3	CH ₂ CHCHCH ₂	0.7	27
Butane	C ₄ H ₁₀	0.7	26
n-butanol	C ₄ H ₉ OH	0.7	20
Butanone	CH ₃ COC ₂ H ₅	0.75	22
n-butyl acetate	CH ₃ COOC ₄ H ₉	0.6	17
Carbon monoxide	CO	5.45	32
Cyclohexane	C ₆ H ₁₂	0.5	20
Cyclopentane	C ₅ H ₁₀	0.7	27
Diethylamine	(C ₂ H ₅) ₂ NH	0.85	28

Gas/vapor	Chem. symbol	Test gas concentration in Vol%	Displayed reading in % LEL
Diethyl ether	$(C_2H_5)_2O$	0.85	27
Ethane	C ₂ H ₆	1.2	35
Ethanol	C_2H_5OH	1.55	33
Ethene	C_2H_4	1.2	36
Ethyl acetate	CH ₃ COOC ₂ H ₅	1.0	25
Heptane	C ₇ H ₁₆	0.4	17
Hexane	C ₆ H ₁₄	0.5	20
Hydrogen	H ₂	2.0	49
Methane	CH ₄	2.2	50
Methanol	CH ₃ OH	3.0	40
Methyl tert-butyl ether (MTBE)	CH ₃ OC(CH ₃) ₃	0.8	25
Nonane	C ₉ H ₂₀	0.35	14
1-Methoxy-Propanol-2-	C ₄ H ₁₀ O ₂	0.9	21
Octane	C ₈ H ₁₈	0.4	17
Pentane	C ₅ H ₁₂	0.55	21
Pentanol	C₅H11OH	0.6	19
Propane	C ₃ H ₈	0.85	29
Propanol	C ₃ H ₇ OH	1.00	27
Propene	C ₃ H ₆	1.00	35
Propylene oxide	C ₃ H ₆ O	0.95	25
Styrene	C ₆ H ₅ CHCH ₂	0.5	11
Toluene	C ₆ H ₅ CH ₃	0.5	20
o-Xylene	C ₆ H ₄ (CH ₃) ₂	0.55	22

The given values may fluctuate by ±30 %.

The table does not claim to be complete. The sensor may also be sensitive to other gases and vapours. Poisoning of the sensor may also alter the relative sensitivities for certain gases and vapours. After overstepping the measuring range there could be increased readings in the measuring range 0 to 100 %LEL. Calibrate the sensor, if necessary. The given test gas concentrations correspond to 50% of the lower explosion limit of each test gas (source: E. Brandes, W. Möller:Technical safety data, PTB, ISBN 978-3-86509-811-5, edition 2008).